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Bifurcations at the Eckhaus points in two-dimensional Rayleigh-Bénard convection
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A twofold nonlinear solution branch with the fundamental wave number outside the neutral curve is
found numerically to connect two Eckhaus points in two-dimensional Rayleigh-Bénard convection. It
results from the nonlinear interaction of the primary modes whose wave numbers are in the ratio of 3:5.
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Because of its simple configurations, Rayleigh-Bénard
convection has been studied most extensively in fluid
mechanics as a testing ground for comparison between
theory and experimental observations. The nonunique-
ness of two-dimensional finite-amplitude convection has
been reported by many [1-3], and we are particularly in-
terested in clarifying the bifurcation structure of those
solutions that bifurcate at the Eckhaus instability points
[4]. So far, mixed-mode solutions with a long wavelength
are known to bifurcate at an Eckhaus instability point,
but the connection between the mixed-mode solutions
was not clear. By restricting nonlinear interactions to
odd wave number modes, we find that two solutions bifur-
cate subharmonically at one Eckhuas point at a wave
number larger than the critical wave number «, and that
they terminate simultaneously on another Eckhaus point
at a wave number smaller than a.. We will also discuss
the region outside the neutral curve, where the double
solution branch exists.

The nondimensional stream function 3 and the temper-
ature deviation 6 from the conductive state in two-
dimensional Rayleigh-Bénard convection are described
by the equations

3,V +J (4, V)=Pr(R3,0+V*) , (1)
3,0+J(¢,0)=3,9+V?0, (2)

where J(, ) is the Jacobian, R is the Rayleigh number,
and Pr is the Prandtl number. The no-slip condition and
fixed temperatures are prescribed on the horizontal boun-
daries of infinite extent at z ==1:

$=0,p=0=0. 3)

Assuming a steady state and a periodicity in the hor-
izontal direction x with wave number a, we expand 3 and
0 in the form

] oo

=3 3 aj.explimax)f,(z), 4)
I=1lm=—w

6=§, § by, explimax)sinlm(z+4) , (5
I=lm=—w

where f;(z) is the Chandrasekhar function [5] satisfying
fi1 (£L)=f] (£1)=0 and is an even (odd) function de-
pending on / being an odd (even) integer. A simple in-
spection of the basic equations (1) and (2) with the sym-
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metric boundary conditions (3) reveals that among the
entire set of modes whose complex amplitudes are a,,,
and b,,,, with / and m being any integers, modes in a sub-
set with

I +m =(even integers) (6)

are closed with respect to their nonlinear interactions.
We use the symmetry (6) throughout.

For numerical purposes we truncate the expansions (4)
and (5) so that only those terms satisfying

I+ |m| <Ny (7)

are taken into account in a Galerkin method.

It is well known that the critical Rayleigh number R,
is 1708 at a,=3.116, irrespective of the Prandtl number
[6]. A line of R =const above R, intersects the neutral
curve twice, at a=a_ (<a.) and at a=a, (>a.). In
the following computations, Pr=1 is chosen. It is
worthwhile mentioning that the two-dimensional roll
solutions of Bénard convection with Pr=1 are mathemat-
ically identical to the axisymmetric Taylor vortex flows in
a narrow gap between two concentric cylinders that ro-
tate with almost equal angular velocities in the same
direction [7]. Therefore, our findings are directly applica-
ble to the axisymmetric Taylor vortex flow in the special
limit mentioned above [8].

Figure 1 plots the Nusselt number

Nu=1+ 3 bjplmcoslmr (8)
]

of the finite amplitude convection at R =17 500. The de-
viation of the Nusselt number from 1 is a measure of non-
linearity: conductive heat transport corresponds to
Nu=1. We follow the main branch from point S in Fig.
1 which is on the neutral curve at a=a in the a-R
plane. The maximum heat transport takes place at point
A near a=3.0. As a is decreased further, the branch
produces a turning point at 7. Passing through B at
a=3.0 it reaches point P, where amplitudes of all the
modes except those with the wave numbers 3Ma
(M=1,2,...,) vanish. The modes in this subset are
identical to those that constitute the finite amplitude
solution on the main branch if 3a is regarded as the fun-
damental wave number. Mizushima and Fujimura [3]
have investigated the bifurcation structure in the neigh-
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FIG. 1. Nonuniqueness of the two-dimensional Rayleigh-
Bénard convection at R =17 500 with Pr=1. The solutions on
the G and H and H and I arcs are analyzed. The dots indicate
that the segments continue.

borhood of P by considering two primary modes in reso-
nance with the wave number ratio of 1:3. At P the sys-
tem sheds another 1:3 resonance branch, as in Mizushima
and Fujimura [3]. Point C at a=3.0 is on this branch.
In contrast to the findings of Mizushima and Fujimura,
where calculations are carried out for a smaller R with
Pr=7, our curve does not reach point F on the neutral
curve at a=a_ directly. Instead, the branch undergoes
the second turning point D and flips over at G near
a=1.5, toward a smaller wave number region. After
making a small arc, the curve undergoes a third turning
point at H and begins to form another arc H and I. It
continues to exhibit such a complicated structure that
only a few segments of the branch are drawn in Fig. 1. In
fact, more than ten different steady states are detected at
a=1.0. Among the segments drawn in Fig. 1, the F and
E segments originate from the point on the neutral curve
and the segments (there are two but they are not resolved
in the figure) convergent to point Q manifest a 1:5 reso-
nance. Note that the turning point H indicates the ex-
istence of fully developed two-dimensional solutions out-
side the neutral point F. The truncation level in Fig. 1 is
N;=14, which one might think is rather small for the
Rayleigh number R ~10.2R.. The main feature of the
branch, however, does not change even if the truncation
number N is increased to as much as 24.

In an attempt to extract a simple structure, R is de-
creased gradually without losing the G and H and H and
I arcs. It is found that at R =3000 the arcs are already
isolated from the main branch, forming an eyebrowlike
shape with not only the left ends of the arcs but also the
right ends (corresponding to G and I in Fig. 1) connected,
as shown in Fig. 2. As the smaller and the larger wave
numbers end where the upper and lower arcs meet, all the
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modes except those whose wave numbers are 3Ma and
5SMa (M =1,2,...,), respectively, vanish. They corre-
spond to the solutions on the main branch with wave
numbers 3a and 5a, respectively. The dent at P on the
main branch for R =3000 in Fig. 2 results from the 1:3
resonance studied by Mizushima and Fujimura [3]. The
1:5 resonance has not been detected on the main branch
at R =3000 or less. However, we could not exclude the
possibility of isolated 1:5 resonance branches.

In Fig. 2 the arcs have contracted to almost a point, as
we can see, at the wave number a~0.8 for R =1900. At
this Rayleigh number, the modes with wave numbers
3a=~2.4 and 5a~=4.0 are almost on the neutral curve at
a=a_ and a=a . Therefore, it seems that the origin of
the solutions on the arcs outside the neutral points is due
to a 3:5 interaction.

In order to confirm the 3:5 interaction, stability of the
main branch with respect to two-dimensional perturba-
tions is examined. The instability due to two-dimensional
perturbations is often called the Eckhaus instability.
Two-dimensional subharmonic instabilities are of our
particular interest. We superpose two-dimensional per-
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FIG. 2. (a) The two-dimensional solutions isolated from the
main branch. The isolated solutions are on two arcs with their
end points in common for each R, as exemplified in (b):
R =2500.
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turbations in the form

L M

=3 3 aexplimax)f/(z)explidx+ot), 9)
I=1m=—M

=3 b,,explimax )sinlm(z + 1)
I=1m=-M

Xexplidx +ot) (10)

on the finite-amplitude solutions (4) and (5), substitute
¥+ and 6+8 into Egs. (1) and (2), linearize the system
with respect to perturbations, and solve a resulting eigen-
value problem with the growth rate o as the eigenvalue
for a fixed Floquet parameter d.

Figure 3 shows the growth rate o of the two-
dimensional perturbations (9) and (10) when d is set at an
anticipated fraction of a, namely, d =1a, la, and 2a at
various Rayleigh numbers. It can be shown that the per-
turbation with d =Z2a produces the same set of eigenval-
ues as the perturbation with d =1a does. As R increases
from R, the sign of the eigenvalue associated with the
perturbation with d =1a changes from negative to posi-
tive values on the larger wave number branch of the neu-
tral curve. Then, the perturbation with d =3a becomes
critical on the smaller wave number branch of the neutral

(a) (b)
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curve between R =1760 and 1800. At R =~1875, pertur-
bations with d =2a and perturbations with d =1a be-
come critical simultaneously on the larger wave number
branch of the neutral curve and on the smaller wave
number branch of the neutral curve, respectively. These
subharmonic bifurcation points are traced in their higher
Rayleigh number region inside the neutral curve in Fig.
4.

The curves of the subharmonic bifurcation with d =1a
and d = ;o intersect the neutral curve where a_:a =4:5
and a_:a . =3:4, respectively. The subharmonic bifurca-
tions with d = 1 and d = a occur simultaneously on the
neutral curve at R ~1875, where a_:a,=3:5. The
weakly nonlinear theory [9] shows that for a two-
dimensional solution at a =k near the neutral curve, i.e.,
k>~a_ or k=~a,, with R slightly larger than R_, a pair
of perturbations with k; and k,, which satisfy the reso-
nance condition 2k =k +k,, is responsible for the Eck-

huas instability when k—ki=a,—a_ or
k,—k=~a, —a;. This result also applies to our strongly
nonlinear analysis: Choose m=—1 and m =1 in

(m +L)a and (m+{)a to get a_:a, =4:5 and 3:4, re-

spectively. For simultaneous bifurcation at a_:a3:5,

setm=—1land m =—2in(m +%)a and (m+ })a.
When the neutral curve and the bifurcation curves are

2.0 40 « (2.0
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FIG. 3. The growth rates o as a function of
the wave number a of the main branch solu-
tion. (a) R =1740, (b) R =1760, (c) R =1800,
(d) R =1850, (e) R =1900. The solid, dashed,
and dash-dotted curves indicate a few of the
highest growth rates of perturbations with

d=1a,d=1a, and d=%q, respectively.
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FIG. 4. The subharmonic bifurcation curves inside the neu-
tral curve. On the solid, dashed, and dash-dotted curves, the
growth rate of perturbations with d=1a, d=1a, and d=1aq,
respectively, is zero. The long dashed curves on the left-hand
side of the figure are the neutral curves compressed by a third
and a fifth in the wave number a.

compressed by 1/3 and 1/5 in wave number a, as is
shown on the left-hand side of Fig. 4, one can notice that
two bifurcation curves corresponding to d=1la and
d=2q start from the point where the two compressed
neutral curves intersect. In the outer cusp region where
the two compressed neutral curves overlap, the conven-
tional supercritical finite amplitude solutions on the main
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FIG. 5. (a) Two solution branches (thick curves hardly distin-
guishable from each other in terms of the Nusselt number) con-
necting the compressed main branches (thin curves). The main
branch solution of the right is composed of modes whose wave
numbers are SMa (M =1,2,...,), whereas modes with 3M«a
(M =1,2,...,) constitute a main branch solution on the left.
R =1900. (b) The growth rate o of the perturbations with
d= %a for a smaller a and d=%a for a larger a on the
compressed main branch.

M. NAGATA 52

branch can be represented by the fundamental mode with
the wave number 3a or Sa and the harmonics with the
wave number 3Ma or SMa (M =2,3,. . .) depending on
the type of compression. The solution on the arcs outside
the neutral curve bifurcates from the Eckhaus points on
the main branch for d = Za at the right edge of the arcs
and for d=4a at the left edge of the arcs (see Fig. 5).
The solutions on the arcs exist in the inner cusp region
bounded by these two Eckhaus instability points in Fig.
4. Although the Nusselt numbers of the solutions on the
two arcs are almost identical, as we can see in Fig. 5,
their convective patterns are quite different, as can be
seen in Fig. 6. On one branch, a roll whose rotation is
opposite to the neighboring two rolls is elongated until it
is halved, and a roll with a different rotation squeezes
into the gap between the bisected roll as the wave number
is increased [see Figs. 6(a)-6(e)]. On the other branch,
three rolls are squashed in a group, and a pair of rolls
with different rotations fits the gap [see Figs. 6(f)—6(j)].
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FIG. 6. The stream functions on the upper branch, (a), (b),
(c), (d), (e), and the lower branch, (f), (g), (h), (i), §). R =1900.
In (a), (f), a=0.7914; in (b), (g), ®=0.793; in (¢), (h), a=0.796;
in (d), (i), @=0.799; in (e), (j), @=0.8019.
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The evolution of the solution near the vertex of the
cusps in Fig. 4 can be analyzed by using an amplitude ex-
pansion method or a normal form analysis similar to the
study by Knobloch and Guckenheimer [1], who exam-
ined the k:(k +1) interaction in the two-dimensional
convection with the stress free boundary condition. Since
their primary modes, the £ mode and the (k +1) mode,
are symmetric in z, the 1 mode (the ‘“slave mode”) is an-
tisymmetric in z through the quadratic interaction of the
primary modes. The difference between their case and
our case is that our case demonstrates the interaction
within the subset associated with the symmetry
(I +m):(even) so that the fundamental mode (the 1 mode)
still retains the same symmetry as the primary modes (the
3 mode and the 5 mode). Even modes created by the in-
teraction of the 3 mode and the 5 mode are antisym-
metric in z. Ensuing interactions between the even modes
and the primary modes produce the fundamental mode,
which is symmetric in z. Therefore, one can deduce that
the primary mode would be governed by a pair of fifth or-
der evolution equations in the 3:5 interaction. Third or-
der coupled evolution equations cannot resolve the dou-
ble structure of the solution branch. The solutions can
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exist in the absence of the modes with (/ +m):(odd). A
detailed analysis using the amplitude expansion based on
the center manifold theory will follow in a separate pa-
per.

The stability of the solutions against general three-
dimensional perturbations should be examined. Tucker-
man and Barkley [4] showed that the solutions bifurcat-
ing from the Eckhaus points are unstable with respect to
two-dimensional perturbations. The Taylor vortex ver-
sion of the solution may explain the braided vortices ob-
served experimentally [10] if it gives rise to a stable
three-dimensional structure at a higher Taylor number.
The braided vortex flow is characterized by a large num-
ber of vortex boundary dislocations and can be produced
only through a sudden change in the rotation speed of the
concentric cylinders. We emphasize that stability prop-
erties are different between the Taylor-Couette system
and the Bénard convection since the mathematical identi-
ty between the two problems ceases to hold for three-
dimensional flows. Other cases with Pr#1 must also be
investigated. In general, one could expect
(2k —1):(2k +1) interactions to occur, although those
with k = 3 would be weaker.
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